
NASA Technical Memorandum 103886

Parallel Processing
and Expert Systems

Sonie Lau and Jerry C. Yan

y. C_t.L O. _,"

_jnc.] ,_t,

.-_C L.

May 1991

N/ .RA
National Aeronautics and

Space Administration

NASA Technical Memorandum 103886

Parallel Processing
and Expert Systems
Sonie Lau, Ames Research Center, Moffett Field, California
Jerry C. Yan, Sterling Federal Systems, Ames Research Center, Moffett Field, California

May 1991

NationalAeronautics and
Space Administration

Ames Research Center
Moffett Field, California94035-1000

SYMBOLS

AAP

AI

cdr

CGE

CM

FGCS

FGHC

ICOT

KL1

LHS

LIPS

MIMD

MITI

MPC

MRB

PE

PIM

PSI

RAP

RHS

RPS

advanced architecture project

artificial intelligence

[no definition] contents of the decrement register

conditional graph expression

connection machine

first generation computer system

flat guarded horn clauses

Institute for New Generation Computer Technology

Kernel language version 1

left hand side

logical inferences per second

multiple instruction multiple data

Ministry of International Trade and Industry

message passing computers

multiple reference bit

processing element

parallel inference machine

personal sequential inference

restricted and parallelism

right hand side

reductions per second

iii

PRECEDING PAGE BLANK NOT FILMED

SIMD

WAM

TREAT

WEC

WME

WTC

single instruction multiple data

Warren abstract machine

TREe associative temporal

weighted export count

working memory element

weighted throw count

iv

PARALLEL PROCESSING AND EXPERT SYSTEMS

Sonie Lau and Jerry C. Yan*

Ames Research Center

SUMMARY

Whether it be monitoring the thermal subsystem of Space Station Freedom, or controlling the

navigation of the autonomous rover on Mars, NASA missions in the 1990s cannot enjoy an

increased level of autonomy without the efficient implementation of expert systems. Merely increas-

ing the computational speed of uniprocessors may not be able to guarantee that real-time demands

are met for larger systems. Speedup via parallel processing must be pursued alongside the optimiza-

tion of sequential implementations. Prototypes of parallel expert systems have been built at universi-

ties and industrial laboratories in the U.S. and Japan. This paper surveys the state-of-the-art research

in progress related to parallel execution of expert systems. The survey discusses multiprocessors for

expert systems, parallel languages for symbolic computations, and mapping expert systems to multi-

processors. Results to date indicate that the parallelism achieved for these systems is small. The main

reasons are (1) the body of knowledge applicable in any given situation and amount of computation

executed by each rule firing are small, (2) dividing the problem solving process into relatively inde-

pendent partitions is difficult, and (3) implementation decisions that enable expert systems to be

incrementally refined hamper compile-time optimization. In order to obtain greater speedups, data

parallelism and application parallelism must be exploited.

1. INTRODUCTION

The science and engineering objectives of future NASA missions cannot be met without an

increased level of autonomy for both onboard and ground-based systems. For example, with Mars

Rover Sample Return, significant amounts of information must be digested in real time to decide

where to collect samples, how to analyze and which samples to retum. The long delays associated

with signal transmission between Mars and Earth require the Mars Rover to make intelligent deci-

sions and operate autonomously. These scenarios demands the design and implementation of com-

plex real time expert systems able to carry out a variety of tasks such as: stereogrammetic mapping

of Mars from orbit, safe landing to a predetermined site, navigation about unknown terrain, site

selection, sample acquisition/analysis, and docking control functions.

Space Station Freedom is expected to remain operational for many years. The onboard computer

systems (consists of many interacting, physically-distributed intelligent subsystems) must be

*Sterling Federal Systems Inc., Palo Alto, CA.

coordinatedsmoothly,utilizedeffectivelyandremaincontinuouslyoperational.Whetherit be
automatingtheoperationof thethermalandpowersubsystems,or flight teleroboticservicers,the
day-to-dayoperationof SpaceStationFreedomdependscritically on thesuccessfuluseof expert
systems.

Currentimplementationsof expertsystemsrun too slowly.Merely increasingthecomputational
speedof uniprocessorswill notbeableto guaranteethatreal-timedemandsbemetfor largeexpert
systems.Speedupviaparallelprocessingmustbepursuedalongwith theoptimizationof sequential
implementations.

Parallelexpertsystemshavebeeninvestigatedat universitiesandindustrialresearchlaboratories
aroundtheU.S.andabroad(notablyin Japan).Prototypesof multiprocessorsspecificallydesigned
for expertsystemshavebeenbuilt. Resultsto dateindicatethatonly certainapplicationsare
amenableto parallelization.In manycases,thedegreeof parallelismachievedis lessthan10.In
orderto obtainhigherspeedupvalues,wemustunderstandwhy expertsystemsaredifficult to paral-
lelize,how theyshouldbewrittenandpartitionedto obtainmaximumparallelism,andhowtheycan
beeffectivelymappedontoparallelarchitectures.

In orderto addressthesequestionsadequately,a surveyof thecurrentstate-of-the-artin parallel
processingfor expertsystemshasbeencarriedout. Section2 beginswith adescriptionof well
knownsymboliccomputationparadigmsandstate-of-the-artsequentialimplementationfor them.
Section3 surveysfour parallelhardwarearchitecturesspecificallyproposedfor symboliccomputa-
tion: DADO, NETL, theconnectionmachine,andPIM. Section4 surveysvariousparallelextensions
to existingsymbolicprogramminglanguages---parallelLisps,ParallelOPS5,parallelPROLOGs,
andparallelobject-oriented languages. Section 5 discusses some of the mapping strategies used to

implement parallelism. Section 6 describes the inherent parallelism observed in expert systems today

and suggests why parallelizing expert systems is difficult. Finally, section 7 discusses how expert

systems might be parallelized and some feasible or productive research directions.

1.1 An Introduction to Expert Systems and Symbolic Computation

Artificial Intelligence (AI) is the area of computer science concerned with the study of intelli-

gence in human behavior. Many computer programs capable of representing and processing knowl-

edge have been constructed to support a wide range of applications. These applications include natu-

ral language understanding, robotics, learning, and reasoning, as well as problem solving in specific

domains such as chemistry, geology and medicine. Unlike conventional software, these AI programs

operate on symbols, as well as numbers. Problem state information and problem solving knowledge

are represented by data structures (or shapes) as well as values. As the problem solving process (e.g.,

by resolution and refutation, forward and backward chaining, hypotheses testing, or constraint prop-

agation) proceeds, arithmetic operations as well as pointer manipulation are performed by the

hardware---creating new data structures, discarding old ones and changing the values, sizes and

shapes of existent structures.

Many paradigms have been proposed to represent problem solving knowledge and state informa-

tion for this kind of computation. For example, predicate calculus employs sequences (or lists) of

2

symbolsconnectedby theconnectives:",'," (and),"v" (or)and"_" (implies).Reasoningcanbe
implementedbasedon resolution (Nilsson, 1982) or rules of inference, e.g., modus ponens. Rule-

based systems distinguish knowledge (represented as if-then rules or productions) and database (or

"working memory") explicitly. Rules are activated when their left-hand-sides match entries in the

database. These rules may modify, delete or generate new entries to the data. At least two kinds of

deduction can be performed under this paradigm: backward and forward reasoning.

Production systems such as CLIPS (Giarratano, I989) and OPS5 (Forgy, I98 I) implement for-

ward chaining. Productions are repeatedly applied to the working memory to deduce new facts (or

working memory elements, WMEs). As shown in figure 1, each production application cycle consists

of three phases: match, resolve, and act. First, all productions are matched against the working

memory. All productions whose left-hand-side (LHS) are satisfied are gathered together into a con-

flict set. One production will be selected from this conflict set for execution. Conflict resolution may

be based on several criteria such as: weighted productions and time-stamps. Either the production

with the highest weight or one matching the most recently added WME is chosen (Forgy, 1981). The

firing of the right-hand-side (RHS) of a selected production may create new WMES, or modify or

destroy old ones. Productions which matches the current working memory are then selected for

conflict resolution again. This cycle is repeated until no more productions can be fired (i.e., until the

conflict set is empty).

Other logic programming systems (e.g., Prolog) support backward reasoning (or goal-directed

deduction). A problem is solved by starting at the goal state, working towards the initial state. The

hypothesis (or goal) to be proven is first put into the goal-list. If the goal cannot be matched with

facts in the data-base, productions will be matched against it. A rule whose RHS unifies with the

goal may generate subgoals (from its LHS) which replace the original goal in the goal-list. Unifica-

tion determines whether two terms can be made textually identical by finding a set of substitutions

for variables in the terms. All occurrences of each variable are replaced by its substitution. Because

both terms are allowed to contain variables, unification can be thought of as a bidirectional pattern

matching operation. This process iterates until all subgoals are verified.

Figure 1. Production system's three-phase cycle: match, resolve, and act.

Besides declarative representations, knowledge may also be encoded procedurally and struc-

turally. Heuristic knowledge which describes sequences of actions to be performed in well-specified

situations can be represented naturally as small programs (or procedures). Specialized data structures

(e.g., semantic nets) may be used to explicitly link important facts and concepts together. Frames

and objects combine both representation techniques by attaching procedures to structured data. Rea-

soning proceeds via message exchange and processing. In response to messages received, an object

may create other objects, modify its internal states, or send messages to other objects.

2. SEQUENTIAL EXPERT SYSTEM IMPLEMENTATION

2.1 Software and Hardware Requirements for Symbolic Processing

Languages proposed for symbolic computations include list processing languages (e.g., Common

Lisp (Steele, 1984), object-oriented languages (e.g., Small-Talk, Goldberg and Robinson (1983)),

Flavors with Symbolics Lisp (Cannon, 1982), and logic programming languages (such as OPS5

(Forgy, 1981), and Prolog (Clocksin and Mellish, 1981). In order to implement these languages effi-

ciently, new requirements are placed on compilers, operating systems and hardware architectures

originally optimized to support arithmetic operations on data cells. Perhaps the most demanding

feature of an AI language is its ability to construct, modify and access complex data structures

dynamically during run time. These structures can be built up as lists or objects--which allow struc-

tural and behavioral properties to be inherited implicitly through a complex hierarchy of class struc-

tures. Primitives such as "+" or ">" of these languages must be able to operate on different data

types and structures.

In order to support dynamic data structures, storage must be managed efficiently and transpar-

ently at run-time. Because AI languages assume an inexhaustible supply of storage cells, storage

ceils that are no longer in use (or "garbage") must be identified, collected and recycled. Furthermore,

the run-time system configuration must be able to support dynamic data typing (or even code modi-

fication on the fly!).

The von Neumann computer does not support this kind of (symbolic) computation directly.

Hardware features supporting run-time type checking, garbage collection and pointer manipula-

tion/arithmetic have been incorporated into Lisp and PROLOG machines to facilitate the efficient

implementation of expert systems.

Finally, the process of developing AI applications is unique in that the algorithm to solve the

problem (and sometimes the problem itself) is not necessarily well defined at the beginning. Program

performance and solution method have to be incrementally refined. This, in turn, creates a demand

for sophisticated program development environments which include

Debuggers that enable program execution to be traced, stepped and backtracked;

Inspectors that allow complex data structures to be browsed and displayed; and

4

Systemmanagementtoolsthathelpmaintainmultiplecodegenerationsconsistent,andperform
incrementalcompilationfor largesoftwaresystems.

Sincetheinventionof Lisp in 1959, symbolic processing has become more efficient via advances

in hardware architectures as well as compiler technology. Following are examples of single-user

Lisp and PROLOG machines, and new algorithms (e.g., RETE) for implementing production

systems.

2.2 Lisp Machines

Lisp and object-oriented programs have been efficiently implemented on Lisp machines (such as

Symbolics 3600s, XEROX 1100s and TI Explorers). Hardware architectural features designed

specifically to enhance the performance of symbolic computations include:

Tagged memory architecture--A few bits of each data word (called the tag field) is reserved for

encoding information about the word (such as its type or whether it is garbage). Lisp

machines contain hardware that operates on the tag field in parallel with the ALU to perform

run-time type-checking and garbage collection efficiently.

Hardware stacks---There are three hardware stacks in the Symbolics 3600, the control stack,

binding stack and data stack, that are used to support tail recursion, shallow binding and

reduce garbage collection overhead. Because Lisp is basically a functional language, efficient

implementation of stacks reduces the time spent in function calls and returns.

Large and fast local disks---This provides support for fast virtual memory.

Large real memory--Symbolic computation generates garbage. As memory becomes more and

more fragmented, memory references become nonlocalized. In order to reduce page-fault,

large real memory is required.

Single user machine--The user has complete control over the machine. Machine idle time is

used for system activities such as garbage collection.

cdr-coding--A compact intemal representation scheme for lists that also eliminates recursion

when traversing the list structure is implemented.

Object-oriented programs execute efficiently on Lisp machines

Slot value access--a single (Lisp operation) "let" provides the correct bindings,

Message processing--a "let" first provides the proper context, the method (message handler) is

then retrieved via a hash table, the method is then applied with the arguments supplied, and

Class inheritance and mixing--various object classes can be combined to construct a new class,

which inherits structural and behavioral features from its component classes.

5

Symbolics3600s employs the copy-swap (Moon, 1984) garbage collection algorithm. They have

since introduced refinements such as ephemeral garbage collection (Hewitt and Lieberman, 1983)

and special hardware such as the Oracle (Moon, 1984). An Oracle is a special-purpose hardware

table responsible for keeping track of references to and creations/destructions of ephemeral objects.

It helps reduce the number of nodes to be traversed (therefore, the time spent) during garbage collec-

tion. XEROX's 1100 uses reference count (Bobrow, 1980) to collect garbage at run time. Because

not all garbage can be identified this way, the entire memory has to be marked-and-swept

(McCarthy, 1960) every now and then.

2.3 PROLOG Machines

Sequential execution of logic programs such as Prolog have been gready improved by the con-

cept of the Warren Abstract Machine (WAM) suggested by David Warren (Warren, 1983). WAM

introduced the following features:

Retrieval of all used space on backtrack--During execution, a stack of data structures is main-

rained whose space must be reclaimed if backtracking is necessary.

Last call optimization--During execution, the environment of each clause is placed on the stack

so that future calls can refer to it. This environment would include subclauses, variables,

bindings, and so on. However, for the last clause, there is no need for its environment to be

stored because no remaining clauses (that would refer to it) exist.

Environment trimming--This reduces the memory required to store the problem state and the

search space.

Instructions to index clauses based on the first argument--This reduces the time needed to

search for a matching clause.

Reordering of goals prior to execution--Logic programs execute according to the order the goals

were asserted by default. Reordering may help minimize the backtracking and/or failures that

may occur.

Many of these ideas were studied and incorporated by Japanese scientists working under the

Fifth Generation Computer System (FGCS) project. FGCS is managed under the Institute for New

Generation Computer Technology (ICOT) established in 1982 by the Ministry of International Trade

and Industry (MITI) (Kawanobe, 1984). FGCS aims to produce extremely efficient knowledge

information processing systems by addressing three key technologies: VLSI architecture, parallel

processing and pattern matching hardware. They take the view that current computer systems must

be redesigned for symbolic computations. Better performance measurement tools and environments

for experimentation must also be developed.

The initial stage of the (three-staged) FGCS project resulted in the development of the Personal

Sequential Inference (PSI) machine. The prototype was rated at 30K LIPS (logical inferences per

second). It incorporated UNIRED, a hardware accelerator developed at the University of Tokyo

6

(Moto-oka,1984),to increasethespeedof unificationandreductionin logic programs.Otherfea-
turesdesignedfor efficientexecutionof logic programminginclude:

taggedarchitecture

horizontalmicroprogrammedcontrol

highspeedlocal memories

multiwayjump capabilityaccordingto thecontentsof aregister

dereferenceof variablesby thehardware

dedicatedinternalbussesfor controlandinternalcommunications

2.4 The RETE Algorithm

Besides designing custom hardware systems and a complete set of software tools encompassing

compilers, operating systems and debuggers, certain symbolic computation paradigms can be

implemented efficiently by exploiting observed behavioral characteristics. Recall that a production

system executes in a three-phased cycle: match, resolve and act. Three observations can be made:

1. Approximately 90% of processing time is spent in the match phase.

2. Very few working memory changes are made every cycle.

3. Many productions share common match-pattems in their left-hand-side (LHS).

The RETE (the Latin word for network) algorithm (Forgy, 1982) (currently implemented in

CLIPS, OPS5 and R1) makes use of these observations and compiles a match-network from the LHS

of all the productions prior to execution. Working memory elements (and changes to them) propa-

gate down branches of the network as tokens. Branches which fail the match (or are not affected by

the change) are not touched. Because common match-patterns share the same branch, the number of

matches performed is reduced. Many improvements have been proposed to the original algorithm;

these include (Schor et al., 1986):

a single modify operator with a new trigger algorithm to replace "delete-and-add-with-

changes";

arbitrary grouping of pattern condition elements: this allows common patterns to be shared
even if the shared text is in the middle or end of the LHS;

incrementalpatternmatchondemand:newrulesmaybeaddedaftertheproductionsystem
hasbegunto execute;and

theTREAT (TREeAssociativeTemporalredundancy)algorithm(Stolfo, 1985).

TheRETE algorithmrequiresmorememoryduringexecutionbecausetheintermediateresultsof
rule firing haveto besavedin thenodes.The"old" modify, consisting of a delete and add function,

triggered the same rule to fire because the add portion made it look like a new working memory

element. The new trigger algorithm triggers on a modify only if that is the desired effect.

2.5 Summary: Sequential "AI Applications" Are Still Too Slow

Given all the "state-of-the-art" solutions mentioned above, execution of large expert systems is

still unable to meet the requirements of many applications. For example, it was estimated that an

equivalent of 1 trillion (i.e., 1012) von Neumann computer operations per second is required to per-

form the vehicle-vision task at a level that would satisfy the long-range objectives of DARPA'S

Strategic Computing Program. Current technology achieves 100 million (i.e., 108) operations per

second at best. This implies that, at least, a 104 times speedup have to be achieved in order to per-

form tasks such as vehicle vision in the Autonomous Land Vehicle Project (Wah and Li, 1988b) in

real time. Many AI applications, such as air traffic control, pilot's associate program and speech

understanding, cannot be used at all if they cannot execute in real-time.

A 10,000-fold speedup is unlikely to be achieved on a single processor system based on innova-

tions in software implementation, sequential hardware architecture and device technology alone.

Software optimizations for many basic symbolic operations have been nearly exhausted. Conven-

tional computing system architecture, on the other hand, has been pushed to their limits of operation

as applications grow in size and scope. Electronic computer systems based on the traditional von
Neumann architecture cannot be made orders of magnitude faster than the current systems because

of at least two fundamental limitations, namely:

1. the speed at which electrical signals propagate between components; and

2. the wavelength of the light used for (and, therefore, the resolution of) the lithographic process

in device manufacturing--which limits the size of devices that can be made.

Note: Multiprocessing must be pursued in order to speed up expert system applications.

3. MULTIPROCESSORS FOR EXPERT SYSTEMS

In order to speed up the execution of any application via parallel processing, three elements are

needed: a multiprocessor, a parallel formulation of the application, and a resource management sys-

tem that maps the application onto the multiprocessor.

Multiprocessorscanbeclassifiedinto two majorclasses:shared-memoryversusdistributed-
memoryarchitectures(asshownin fig. 2). Shared-memorymachinesconsistof anaggregateof pro-
cessormodulesanda(logically speaking)globalmemoryconnectedvia somecommunicationnet-
work. In practice,this globalmemorymayconsistof multiplememorymodules---eachof which is
equallyaccessibleby all processormodules(fig. 2(a)).Computingprocessesmaycommunicatevia
shareddata-structures.Distributed-memorycomputers,on theotherhand,do notpossessany
(logicalor physical)globalmemory.Eachprocessingelement(or site) consists of a processor unit

and some local memory (fig. 2(b)). The processor at each site has exclusive access rights to its own

memory. Computing processes communicate by message passing alone. Both muhiprocessors shown

in figure 2 are homogeneous --in that all memory modules, processor modules and processing ele-

ments are identical. The exact topology of the interconnection network is not specified; examples of

topologies proposed to date include

1. The Omega Network for the Ultracomputer (Goto, 1983) and a shared bus for the Sequent

Balance 21000 (Using the Sequent Balance 8000, 1986) for shared-memory architectures; and

2. Binary N-cube connections (e.g., Caltech Cosmic Cube (Seitz, 1985)) for distributed-memory

architectures.

I P = Processor Module M = Memory Module J

rk
(a) (b)

Figure 2. Architectures. (a) Shared-memory, (b) distributed-memory.

Given an ideal multiprocessor, with thousands of processing elements and extremely fast access

times between these elements, speedup cannot be obtained unless the application is formulated such

that most of these processing elements are doing useful work most of the time. This implies that a

single computation must be partitioned into thousands of subtasks. Furthermore, unless these sub-

tasks are fairly independent, much time will be wasted on waiting for synchronization.

If we have a parallel formulation of an application and a real multiprocessor, the speedup actu-

ally achieved still depends critically on how the application is actually mapped onto the machine. In

other words, appreciable speedup cannot be obtained unless the resource management system of the

mutiprocessor is able to do the following:

9

1. properly trade off conflicting optimization subgoals. For example, in order to minimize

communication, the whole program should be placed on one site. On the contrary, maximizing con-

currency suggests distributing the program over the entire multiprocessor.

2. adapt to program behavior variations. The resource management system must be able to

detect and exploit various behavioral characteristics of application programs --both across different

programs and fluctuations within a single execution.

3. take advantage of specific hardware characteristics (such as physical locality between a cer-

tain pair of processing elements) to reduce program execution time.

In order to help evaluate multiprocessor architecture proposed for symbolic computation, we

must understand the impact of various architectural parameters on parallel program execution, scal-

ability and performance:

1. The number of processors bounds the maximum (ideal) speedup.

2. The connection topology (and routing algorithms) affects the communication latency

between different (processing) sites. Highly-connected topologies incur expensive hardware costs

and do not scale; sparsely-connected topologies, on the other hand, impose long delays to most

destinations.

3. The architecture of individual processing elements can influence the overall parallel architec-

ture performance. On one end of the spectrum, the connection machine has ten thousands of (fine-

grained) one-bit processors operating in SIMD mode. At the other extreme, the Intel iPSC/2

"Touchstone _/" has hundreds of RISC processors (Intel i860) operating in coarse-grain MIMD

mode.

4. Shared-memory architectures are less scalable than distributed-memory architectures.

Scheduling and communication, on the other hand, are simpler on shared-memory architectures.

The machines surveyed in this section include the CMU's DADO and NETL, MIT's connection

machine, and FGCS's PIM.

3.1 DADO

The processing elements (PE) of DADO (Stolfo et al., 1983) are connected as a binary tree.

Speedup is achieved through the distribution of storage and the parallel execution of matches and

updates based on simple broadcast up and down the tree. Each PE has a special I/O device that can

perform three global operations efficiently:

1. BROADCAST--send message to all descendents,

2. REPORT--send message to ancestor, and

10

3. MAX-RESOLVE -----determine the maximum value among the current node and its two

descendents.

Because of its tree structure, messages can be broadcasted to all nodes in log n time. Each PE can

operate as a master (in MIMD mode) or a slave (in SIMD mode). A master PE executes instructions

in its own local memory and uses its descendents as needed by BROADCASTing to them. A slave PE
executes instructions BROADCASTed from its ancestor and then REPORTs back. The final solution

of a computation can be determined by performing the MAX-RESOLVE function on the current
node's value and the two results returned from its descendents. Hardware was implemented to sup-

port the functions: maximum, minimum and average.

Production systems were mapped onto DADO by dividing the binary tree into three logical lay-

ers. The top layer, called the uppertree, performs synchronization, conflict-resolution and the act

phases (it serves basically as the decision maker). Productions are distributed across the next layer,

the PM-level. At this level, the match phase and instantiations take place. The bottom layer, the

WM-subtrees, holds the working memory elements (WMEs) at its leaves. Variations based on this

algorithm include the following (for more detail, see section 2.4):

1. full distribution of production memory---distribute productions to processors in groups along

with relevant working memory elements;

2. Miranker's TREAT algorithm (TREe Associative Temporal redundancy)--same as basic

algorithm except that certain states are saved in memory;

3. fine grain RETE--RETE network compiled into binary tree; and

4. multiple asynchronous execution--for handling multiple rule firings.

In order to reduce the communication bottleneck between peer nodes on different halves of the

tree, data were duplicated wherever needed. This introduced consistency problems. Furthermore, it

was difficult to coordinate a large number of PES for full-speed operation because, in some cases,

some nodes were slower than others and the links joining them are of different lengths. Buffers were

considered; however, in other cases, the buffers created bottlenecks. There were two prototypes pro-

posed (Stolfo et al., 1984):

DADOI: operational since April 25, 1983 with 15 PEs executing at 3.5 MHz and rated at

4 MIPS each. The speedup obtained was limited mainly because different tasks on different nodes

required different processing times.

DADO2: gate-array technology; 1023 PES; runs at 12 MHz; 570 MIPS

3.2 NETL

NETL (Fahlman, 1980) is a fine-grain SIMD machine designed by Fahlman in 1979 and later

refined by Touretzky in 1984. It implements a semantic net formalism which encodes knowledge and

11

conceptsinto graphicrepresentations.Its processingelementsare(logically) interconnected as nodes

in a semantic net. The (logical) interconnections acts as the arcs. Messages are exchanged along

these interconnections during computation. The NETL hardware, as shown in figure 3, consists of a

number of PEs connected to a common bus and a switch which provides the logical connection

between processors. A processor requiring a connection (to establish a relation) to another processor

would send a request to the switch.

Common Bus

I I I I
I li ,MOIIprocessor processor ° ° ° processor processor

I I i I
! i

Figure 3. The NETL architecture.

Parallel reasoning on NETL is performed via marker passing (Hendler, 1988). Tokens are sent

through nodes (i.e., PEs) that lead to the solution. When a token goes through a node, a bit at the

node is set. When the goal is reached, the nodes with the bit set constitutes the search space. For

example, a node satisfying all the preconditions of a production could be located by propagating the

preconditions concurrently through the network. The node with a bit set for each precondition would

be the one that satisfies the rule. Marker passing is basically a "nondeductive" search. It depends on

an associative network which allows it to traverse the links, regardless of the format of the link, in

order to mark the relevant endpoints (i.e., being able to reach the node associated with the current

node). Because binding information can be ignored, marker passing is faster than deductive search.

Unfortunately, marker passing can return incorrect paths because binding information is not taken

into consideration. A path evaluator with a global view could help eliminate this problem.

Another important feature of marker passing is that there is virtually no contention. Several

markers arriving at the same node are simply logically OR'ed (Way and Lee, 1988a). Unfortunately,

the network controller in NETL (which is essentially, a single serial computer) can be a bottleneck--

especially when a fact is being connected with every object that it is related to. NETL has been simu-

lated only with software.

3.3 Connection Machine

The Connection Machine (CM) (Hillis, 1985), originally proposed by Hillis in 1981, also imple-

ments a semantic net formalism. It attempts to overcome the problems NETL faced 1) an expensive

and non-sealable switch, 2) the lack of information passed between processors (markers only), and

3) the small local memory available on each processor. NETL passes only markers whereas CM is

12

ableto performreasoningbasedon theexchangedmessagesof arbitrarylengthbetweencells,
manipulationof addresspointers,anddynamicconstructionof structures.

Thiscomputerwasoriginally designedwith afine-grainMIMD architecturein orderto allow
largermemorysizesbut thecommercialimplementation,consideringfeasibility tradeoffs(costfor
largermemorysizeversuscostof moreprocessors),usedaSIMD architecture.ThePEsconnectin a
hypercube configuration. Each PE is given a fixed number of connections to other PEs. All PEs exe-

cute in a lock-step manner based on an external clock and instructions from the front-end host com-

puter. A set of flags on each PE can be selectively set--thereby giving more flexibility and expres-

siveness in the host computer's control. Users interact with the CM via the front-end host computer

(e.g., Sun workstation or Symbolics Lisp machine). What appears to be memory locations that stored

their working values are, in actuality, separate processing elements.

The performance of this computer depends on the quantity of data used and the interdependen-

cies of the data. Because the PEs have small local memories, data can be spread out over several

PEs, thereby requiring several communication steps in order to process a single piece of data. This

computer is in commercial use today and also supports various applications other than those simply

intended for marker-passing with an inheritance hierarchy.

3.4 Parallel Inference Machine

The construction of multiprocessors for logic programs is, in fact, a major goal of Japan's Fifth

Generation Computer System project (Goto, 1989). The overall target performance of the Parallel

Inference Machine (PIM) is 10M to 20M reductions per second (rps). The pilot machine PIM/P, with

128 PEs connected as a hypercube, executes 50 nsec cycles in a four stage pipeline. PIM will be

developed based on lessons learned from building sequential personal PROLOG machines (PSI).

Multi PSIs were networked together forming multiprocessors--Multi-PSI I (1986-1987) and Multi-

PSI II (1987-1989)---to test parallel software schemes eventually to be executed on PIM (Fuchi and

Nivit, 1988). Multi-PSI II incorporates faster PEs and a more intelligent network than Multi-PSI I.
These schemes include

1. The PIM will be programmed in Kernel Language Version 1 (KL1). KL1 includes parallel

extensions to KLO (the language for programming PSI). The parallelism in KL1 is based on the syn-

tax and semantics of Flat Guarded Horn Clauses (FGHC). FGHC was chosen because of its clear and

simple semantics. Language modifications, new data abstractions and meta-inference mechanisms
were also introduced.

2. The Multiple Reference Bit (MRB) and copying schemes are used to manage multiple refer-

ences, for recognizing reclaimable data for local garbage collection and for detection of shortage in

memory space.

3. The Weighted Export Counting (WEC) scheme is used for interprocessor incremental

garbage collection. WEC is a specialized version of reference count -----each object keeps a record of

whether it is referenced by processes at remote sites. Instead of simply "counting" references, exter-

nal references are weighted; so, instead of increasing/decreasing the count by 1 each time, the

13

(integer)weightof aparticularreferenceis added/subtractedwhenit is createdor no longerneeded.
Whenthiscountis zero,objectscanbereclaimedlocally (assumingthattherewereno local
references).

4. The Weighted Throw Count (WTC) scheme is used for controlling the termination of a par-

ent before the termination of all its children processes. It behaves similarly to the WEC except that it

applies to processes rather than objects.

5. A meta-programming facility, known as SHOENS, is provided for better resource and task

management and larger grain of computational units. SHOENS are metaprogramming capabilities

that supports termination detection. A SHOEN signals termination once all its goals complete. Goals

are solved depth-first and suspended with a non-busy waiting scheme.

Dynamic load balancing strategies are being researched. Currently, idle processors will request

work from busy processors.

3.5 Summary

Production systems were mapped onto DADO's binary tree structure directly and executed in

parallel. The speedup obtained, however, was small because the many processing elements remain

idle most of the time. NETL introduced a marker passing approach to reasoning but the network

switch (which services all connection requests) was a bottleneck. The connection machine improved

upon the NETL design by eliminating this network switch. Unfortunately, its small local memories

tend to fragment much of the data and code. The performance of PIM is yet to be seen with its new

garbage collection techniques, termination detection techniques and meta-programming capabilities

with SHOENS. These hardware approaches introduce new possibilities as well as further areas of

research. All of the machines surveyed, with the exception of FGCS's PIM, were either never built

(NETL), not used (DADO), or are now marketed for non-AI applications (CM II).

4. PARALLEL LANGUAGES FOR EXPERT SYSTEMS

Parallel languages can be constructed by extending an existing language or defining a completely

new language. Extensions to an existing language are desirable for those who want to "parallelize"

existing program codes with minimal effort whereas new languages can incorporate a style of pro-

gramming that (potentially) improve the utilization of underlying hardware. The languages surveyed

in this section include parallel Lisp, parallel OPS5, parallel PROLOG, and object-oriented

languages.

4.1 Parallel Lisps

QLisp (queue-based multiprocessing Lisp) (Gabriel and McCarthy, 1984) was designed to exe-

cute on shared-memory architectures. A scheduler assigns new processes on a global queue to the

14

leastbusyprocessorbasedona round-robin algorithm. The degree of multiprocessing can be con-

trolled explicitly at run time. Very few extensions are made to Lisp although some existent con-

structs take on new meanings in a multiprocessing setting. Processes are created using two con-

structs: QLET and QLAMBA.

(QLET pred ((Xl arg l)... (xn argn)) . body)---QLET expresses parallelism that has regularity

over, for example, an underlying data structure. A predicate "pre_' is evaluated before any other

action regarding this function is taken. If pred evaluates to 0, then QLET acts exactly like a

(sequential) LET; in other words, arg: ... argn are evaluated sequentially and their results are bound

to Xl ... Xn, respectively. Ifpred returns EAGER, QLET does not wait; it proceeds to evaluate the

functions in the body concurrently - with processes spawned for each argi. It blocks only if the value

of an argi is actually required and not yet available. Otherwise, processes are spawned, one for each

argi. The process evaluating the QLET waits until all argi are available and their values bound to xi

before it resumes and executes the body.

(QLAMBDA pred (lambda-list). body)--QLAMBDA can be used to create closures dynami-

cally for expressing less regular parallel computations. Again, when pred evaluates to 0,

QLAMBDA behaves exactly like LAMBDA. Ifpred returns EAGER both the parent process and the

QLAMBDA-closure executes. The parent blocks only if it actually requires the result of the closure.

Otherwise, the closure executes as a separate process. The parent process (caller of QLAMBDA)

suspends until the spawned process finishes.

QLisp runs currently on Encore muhiprocessors.

MultiLisp (Halstead, 1986) is an extension to Scheme (Abelson and Sussman, 1984) with con-

structs for supporting parallel execution. It provides lexical scoping as well as "first-class citizen-

ship" for Lisp functions--which enables functions to be passed and returned as values (to other

functions which may reside on other processors), or stored as part of a data structure. The construct

"(future body)," creates a process to evaluate body and returns a future which acts as a place holder

for (or a promise to deliver) the result of the evaluation. While the evaluation proceeds, the future

can be used for constructing data structures or passed around as an argument. Any process which

actually requires the value of the result will be suspended unless the evaluation process has com-

pleted. A "delay" construct is also provided which implements lazy evaluation--allowing a future to

be evaluated only on demand. MultiLisp is implemented on the Butterfly machine and Concert, an

experimental shared-memory multiprocessor at MIT (Halstead et al., 1986).

QLisp and MuhiLisp were both designed for shared-memory architectures. Execution is per-

formed sequentially if desired. Only a few constructs are needed to initiate parallel processing. In

both cases, information about the importance and requirements of tasks cannot be specified. Pro-

posed solutions include associating sponsors (Theriault, 1983) and priorities (Halstead, 1986) with

tasks.

Communicating Lisp processes have also been proposed as a simple and inexpensive approach

to implement a parallel Lisp environment on distributed architectures Model, 1980). Lisp processes

can be coordinated to work on one particular problem. Tasks can be dynamically created and passed

15

aroundbecauseLisp allowsprogramcodeto beconstructedandinterpretedduringexecution.Com-
municatingLisp processeshavebeenimplementedon transputersystems(Smith, 1983).

A fine-grain version of parallel Lisp called *Lisp (previously known as CmLisp) is also imple-

mented on the Connection Machine (CM) (Hillis, 1985) CmLisp is an extension of Common Lisp

specifically designed to support the parallel operations of the hardware architecture. Parallelism is

achieved by allowing an operation to be performed simultaneously over each element of a large data

structure. A new data structure, called Xeetor, allows (each value o0 a set of values to be stored by a

set of processing elements. This enables entire data sets to be operated on simultaneously. Some of

the concurrent operations available are: combine, create, modify, and reduce. New SIMD-

PARALLEL operations can also be defined based on these concepts. *Lisp was designed to hide

implementation details and the CM architecture from the user.

4.2 Parallel PROLOGS

Recall that logic programs consists of facts and rules. Facts (or clauses) describe the attribute of

an object (fig. 4(a)) or the relationship among objects (fig. 4(b)). Rules, however, are procedural

interpretations. It consists of a head and a body. The head of the rule is the clause to the left of the

":-" while the body is everything to the fight (fig. 4(c)). The body may contain more than one clause.

Note that for variables that exist in the rules (e.g., X, Y, and A), the binding of all occurrences of the

same literal must share the same bindings (e.g., A in the first clause of the body must be the same as

A in the second clause). To begin execution of a logic program, an initial goal is supplied and

matched against the facts and rules. If it is in the facts list, then it is satisfied and execution is com-

plete. Otherwise, it may match the head of a rule. In this case, each of the clauses in the body must

be satisfied (i.e., they become subgoals that must be satisfied) in order for the entire rule to be satis-

fied. This continues until all the goals/subgoals are satisfied. Failure occurs if a goal cannot be
satisfied.

(a) male (david) female (mary)

(b) married (david, mary)

(c) Inlaw (X, Y) :- parent (X, A), married (A, Y)

Figure 4. Logic program syntax.

Based on this simple execution model, four sources (and combinations of these) of parallelism

can be exploited:

16

1. Or-parallelism: Each rule, whose head unifies with a fact, can be solved in parallel.

2. And-parallelism: Processes execute in parallel to solve each clause of the body. This may

also involve communication and coordination among the processes to resolve variable binding con-

flicts between the clauses.

3. Stream-parallelism: Eager evaluation of structured data is treated as a stream. This is a

pipelined form of AND-parallelism. Unifications for the first subgoal are forwarded to the process

with the second subgoal as soon as it becomes available, and so forth. In this manner, the other sub-

goals may execute in a somewhat parallel fashion. But as with most pipelines, there will be a latency

overhead (in filling the pipeline).

4. Search-parallelism (also known as parallel unification (Quinn, 1987): Assertions are

grouped so that search may proceed in parallel without contention to a single resource.

Two models which exploit some of these sources of parallelism have been proposed.

The AND/OR parallel execution model (Conery and Kibler, 1981) was first implemented as an

interpreter using the Dec- 10 Prolog. This model provided a method for partitioning a logic program

into small asynchronous and logically independent processes that communicate via messages. The

parameters which affected the actual speedup obtained include: size and number of messages sent

during the solution of a problem; the ratio of idle time to processing time for each PE--when there

are more processes than PEs, the amount of time processes are blocked vs. ready in each PE are

important; for each PE, the costs for preparing, routing, and receiving messages; and cost for
database search for each PE.

This AND/OR model builds a tree of processes as computation proceeds. Messages are exchanged

only between the parent and children processes--not between siblings and peers. Start, redo and

cancel messages are sent from parents to children who reply either with success or fail messages. In

this model, an OR-process replaces the backtracking in sequential computation by acting as a mes-

sage center. It distributes work among its own children and sends the first successful tuple received

back to its parent. Meanwhile, its other children continue working and success messages collected

are only sent up to the parent if a redo message is received. Eager evaluation is implemented by

sending redo messages to successful children so that more solutions exist if the parent should require

it. If no child succeeds, it returns a fail message to the parent. The OR process also filters out dupli-

cate solutions since it maintains the list of successful messages from its children and a list of mes-

sages it has sent up to its parent. A parallel AND-process is not as straight forward as it may seem

because distributing literals across PEs has its problems:

1. Binding conflicts among the literals need to be resolved.

2. Not much computation can be done while waiting for literals to be bound.

3. Some literals fail if attempts are made to solve them before certain variables are instantiated.

17

It wasproposed that the literals be ordered (based on a data dependency graph) in order to

determine which must be performed sequentially and which could be computed in parallel (Conery,

1983). During execution, literals that become eligible for processing are identified and incorporated

into the graph. If a failure occurs within the graph (i.e., failure occurs when a child process con-

eludes that there is no possible solution below it in the search space) the backward execution algo-

rithm would be used to select the candidate literal which may cure the failure (of the AND-process).

The second model, the RAP-WAM model for concurrent PROLOG proposed by Hermenegildo

(Hermenegildo, 1985), was based on DeGroot's Restricted-And-Parallelism (RAP) work (DeGroot,

1984) and parallel extensions to WAM. RAP reduces the overhead associated with runtime man-

agement of variable binding conflicts between goals. Previous approaches were unsatisfactory--

compile-time approaches required user input on the variables while run time approaches, such as the

AND/OR model, were complex and expensive. RAP's technique combined both compile time and run

time analysis. RAP was able to solve the binding conflict problem by analyzing the clauses involved

at compile time and performing simple checks on the variables at run time. The combined analysis is

implemented in the extensions made to WAM (Hermenegildo and Tick, 1988) as follows.

1. conditional graph expressions (CGE): CGEs allow users to express potential parallelism in

the form of condition statements that would generate either a parallel or sequential graph depends on

the result of the condition test. A parallel graph would contain a point in the graph where several

goals may be satisfied in parallel.

2. "goal stacks" to support on-demand scheduling: A goal stack is located on every PE and

contains goals that must be satisfied (i.e., work to be done). These goals are generated during a par-

call (i.e., parallel call) which places goals that can execute in parallel onto a stack for either the local

processor or a remote processor. Remote idle processors can take a goal off a local goal stack as

needed. This eliminates the need to have busy processors schedule work for idle processors.

3. message buffers: Because some processors may take longer than others, a buffer was used

for pending messages. A processor with longer processing time would check its buffer, once it fin-

ishes its current computation, for messages that may have arrived during its non-idle time.

4. two new types of stack frames: parcall frames--coordinate and synchronize execution of

parallel calls by keeping track of all the goals, especially those taken off by remote processors in

case backtracking is necessary; and markers--supports backtracking by marking the point at which

backtracking should begin; appropriate register contents are saved before another clause is executed.

This model performed search with minimal backtracking by representing the problem as a con-

dition graph to evaluate and analyze the possible paths to select the best solution. This analysis also

provided dependency information among goals. The abstract (RAP-WAM) model has been studied

through simulations and it is being implemented on a Sequent Balance 21000 computer.

18

4.3 Parallel Object-Oriented Languages

A number of object-oriented languages were studied by the Advanced Architecture Project

(AAP) at Stanford University's Knowledge Systems Laboratory. The project's primary goal was to

improve the performance of expert systems through parallel processing. Because the design space

was prohibitively large, it was decided that only a few options would be explored at each implemen-

tation layer of the system: application, problem solving framework, resource management, pro-

gramming language, and hardware architecture.

All experiments were performed on simulated multicomputers where processing sites were con-

nected as a toroid. Besides a CPU, each site also had a separate communications controller which

supports dynamic cut-through routing (Dally, 1987) and nonblocking message sending. Memory

usage, code distribution and garbage collection were not simulated. Two programming languages

were designed for/supported on this simulated parallel architecture:

1. A concurrent asynchronous object-oriented system (CAOS) (Brown et al., 1986)--CAOS

objects were large grained asynchronous multiprocessing objects. Various message-sending primi-

tives were defined, including synchronous and asynchronous SENDS, as well as SENDS which

returned futures.

2. LAMINA (Delagi et al., 1987)--LAMINA provides extensions to Lisp to support functional

programming, object oriented, and shared variable styles of programming. The implementation is

based on the notion of a stream--a data type used to express pipelined operations by representing the

promise of a (potentially infinite) sequence of values.

The concurrent problem solving frameworks developed were based on the blackboard problem

solving model (Nii, 1986). Domain knowledge is represented as a number of knowledge sources--

each of which consists of if-then rules. The problem state is represented on a globally shared data

structure known as the blackboard. Knowledge sources can make changes to the blackboard by cre-

ating, destroying or modifying existent blackboard nodes. A scheduler governs the operation of dif-

ferent knowledge sources. The blackboard model has demonstrated success in many areas of real-

time expert system applications such as situation analysis (Spain, 1983) as well as speech under-

standing (Erman et al., 1980). Parallelism may be extracted from the blackboard via: 1) knowledge

parallelism--multiple knowledge sources can execute concurrently; 2) pipeline parallelism--

information at different levels of abstraction are processed simultaneously; and 3) data parallelism---

different parts of the blackboard can be can be operated on concurrently.

Two implementations, Cage and Poligon, were proposed for shared- and distributed-memory

architectures, respectively. With Cage (Concurrent AGE) (Nii et al., 1988), a centralized scheduler is

responsible for the parallel execution of rules and knowledge sources. This serializing control mech-

anism was discarded in Poligon (Rice, 1988). Blackboard nodes are distributed over the entire multi-

processor network. Modifying a slot of a blackboard node invokes the rule directly attached to the

slot. These invocations created processes on different processors for execution. This reduces the

length of the critical sections on the processors holding blackboard nodes, and enable multiple rule

19

invocationson thesameblackboardnode.Extramechanismshadto beimplementedto helpthe
nodesiterate(in adistributedhill-climbing fashion)towardsacoherentandcorrectanswer.

Two major applications have been implemented based on these concurrent blackboard architec-

tures to evaluate their performance. They are ELINT and AIR TRAC. ELINT is a expert system for

interpreting processed, passively acquired, real-time radar emissions from an aircraft (Brown et al.,

1986). AIR TRAC attempts to understand and interpret radar tracks (Nakano and Minami, 1987) in

real time. Dependence graphs are used to decide on the decomposition scheme. This simulation,

modelling a distributed memory system, has been able to achieve up to 100 times speedup over a

single processor. Where there were bottlenecks, replication was used.

Major problems encountered include: bottlenecks due to memory contention and a central

scheduler; race conditions with locking mechanisms and consistency problems with atomic

operations.

4.4 Summary: Parallel Languages for Expert Systems

Most of the examples of parallel languages for symbolic computation were extensions to existing

languages. This enabled users to parallelize their application with less effort than if a new language

were defined. Extensions to the Lisp dialect include QLisp, MultiLisp, *Lisp, and LAMINA. They

provide constructs that will allow for parallel execution such as the spawning of tasks onto a global

queue or through the use of futures. CPARAOPS5, on the other hand, actually changes OPS5 pro-

grams into parallel C programs. Other work focused on parallel execution models for logic pro-

grams. The AND/OR model created a tree of processes to provide parallelism. The RAP-WAM model

used conditional graph expressions to denote times at which work could be performed in parallel.

Most of these approaches were based on shared-memory architectures because they are simpler,

involving fewer overhead issues.

5. MAPPING COMPUTATIONS TO MULTIPROCESSORSmlMPLEMENTATION OF

PARALLELISM

Recall that in order to speed up the execution of any application via parallel processing, three

elements are needed: a multiprocessor, a parallel formulation of the application, and a resource man-

agement system that maps the application onto the multiprocessor. This section deals with the third

element--the mapping of expert system applications onto parallel architectures. In particular, the

models cited here involve production systems; i.e., the mapping of if-then rules and working memory

elements onto the DADO and multicomputers.

5.1 Mapping Production Systems onto DADO

Five algorithms were designed to map production systems onto the DADO binary tree architec-

ture. They are described below.

20

1. The original DADO algorithm: Recall (as outlined in section 3.1) that the binary tree of PEs

are divided conceptually into three levels: Uppertree, PM-level, and WM-subtrees. The uppertree

performs the conflict-resolution and act phases. Productions are stored in the PM-level where the

match phase also takes place. The WMEs are stored at the (leaves of the) bottom layer, the WM-

subtrees. Computation begins by propagating (WME) changes down the tree and matches back up

with conflict resolution performed at each level using max-resolve (Max-resolve is capable of com-

paring the values of specific registers on a specified set of PEs in one machine cycle. This improves

the speed of the conflict resolution phase of the production system cycle.) until the root is reached

and one rule is chosen to be fired.

2. Full distribution of production memory. PEs alternate between MIMD and SIMD mode

dynamically. First, rules are divided into small groups and distributed to each PE along with a pre-

defined rating criteria together with the WMEs that match some patterns of the LHSs of some these

productions. Every PE (in MIMD mode) performs the match for its local rules based on changes
broadcasted to all PEs. Then, in SIMD mode, each PE performs a rating on its matches using the

given criteria. Once a rule has been selected, using max-resolve, its RHS actions are broadcasted as

WME changes and the match phase begins again. The performance of this algorithm depends mainly

on the complexity of the local match function and on the size of the local WMEs.

3. Miranker' s Tree Associative Temporal Redundant (TREAT) algorithm: This algorithm

improves upon the first algorithm by saving the state of the matches of the previous cycle. During

the next cycle, delete actions will eliminate the matches that no longer apply and add actions will

select new matches. This eliminates the need to repeat matching unaffected rules on each cycle.

4. Fine grained RETE: The RETE algorithm is mapped logically onto the DADO architecture.

The leaves of the DADO binary architecture implement constant-test nodes (fig. 5). Matches will

propagate up the tree to its ancestors that may represent two-input nodes. While the leaves are exe-

cuting, the two-input nodes are idle waiting for results. A match reaching the top of the tree indicate

the production selected to be executed. Changes to WMES are then broadcasted to the leaves of the

tree and the cycle repeats. This behaves much like a pipelined architecture where every processor

works in MIMD mode.

5. Multiple asynchronous execution: This algorithm attempts to allow for the execution of sev-

eral production system programs or of several conflict set rules of one production system program

concurrently.

At this point, the performance of each algorithm relative to the others have not been studied.

However, each algorithm has its own drawbacks and features: Algorithm 1 tends to repeat many of

its matches from the previous cycle. Associative memory would help by identifying the rules that are

affected by a WM change and eliminating unnecessary matches. The performance of algorithm 2

would be limited if the local WM is too large for a PE to store conveniently. Performance varies with

complexity of the local match although this may be reduced by the hashing of the WM. Algorithm 3

is simply a refinement of algorithm 1 taking temporal redundancy into consideration. Algorithm 4

provided performance improvements through a pipelined effect. It can also support the overlay of a
second network since the leaves would be idle once its matches are broadcasted to its ancestors.

Finally, algorithm 5 makes suggestions to support multiple rule firings whether it be from separate

21

productionsystemsor from a single production system. This was something not considered in the

previous algorithms. Each algorithm targets a different characteristic in the production system being

implemented and the comparison between them would not be straightforward.

5.2 Mapping RETE Networks onto Multicomputers

Production systems can be mapped onto Multicomputers in an "obvious" manner by representing

nodes in the RETE network as objects and tokens as messages. A single processor will be used for

each object in order to avoid placing any sequential constraints on the objects. Unfortunately,

because very few changes are made in each production system cycle, processor utilization would be

low. Furthermore, changes made to the same object have to be processed sequentially (producing a

possible bottleneck in that processor). Finally, the overhead involved in message sending and local

scheduling is relatively high because the messages being exchanged are extremely short and the pro-

cessing associated with each arriving message is also very small (on the order of 50 instructions

according to Gupta's thesis (Gupta, 1986)). This approach would not provide any performance

improvements.

Gupta (Tambe et al., 1989) proposed another approach centered around two globally distributed

hash tables. Furthermore, the processors were partitioned based on functionality rather than by node

boundaries. The partitioning included (see fig. 5 for an example of these nodes)

1. a control processor,

2. several constant-test node processors,

3. several conflict-resolution processors, and

4. remaining processors used for matching (mainly two-input nodes).

Recall that matching is the major bottleneck in production system execution and the RETE algorithm

has greatly improved its performance. In particular, within the match phase, the most time-

consuming activity involves the two-input node activations. As a token arrives at either the right or

left input, it must be matched against the list of tokens at the other input. In this hash-table approach,

tokens are stored in global hash-tables. One hash table contains tokens destined for the right input of

the two-input node while the other contains the left input. This enabled referencing of the values at

the two inputs in one step (based on the key to reference both tables simultaneously). Also, since the

table was distributed, tests on several two-input nodes can be performed in parallel.

The performance of this approach depends on the discriminability of the hash function. The cur-

rent hash function was based on I) the variable binding being tested and 2) the unique "node-id" of

the destination two-input node. Speedup depends on the length (M) of the chain of dependent node-

activations. Based on initial simulation, this approach reached a 26-fold speedup in the simple case

with M = 5, a 15-fold speedup in some special cases where M = 10 and speedup of 9-fold for

22

f

class1 class2

?x ?x

NOT 5 4

P3 P2

J(_) = memory nodes I

Constant test node

a-mem nodes

Two input nodes

_-mem nodes

Example LHS of three different productions =>
PI: (class1 ?x 5)
P2:(class1 ?x 5) (class2 ?x 4)
P3: (NOT (class1 ?x 5))

J

Figure 5. RETE network.

M = 15. Mapping onto a MPC eliminated the bottleneck potential of a centralized task scheduler

found in shared memory architectures. However, it is possible that the hash function could poten-

tially serialize two distinct tokens by placing them on the same processor.

5.3 Distributing Rules on Multicomputers

Moldovan views the problem of mapping production systems onto multiprocessors as a perfor-

mance optimization problem (Moldovan, 1989). Moldovan makes the following definition--A rule

(or production) is defined by Pi - Li _ R! where Li and Ri are the left-hand-side (LHS) and left-

hand-side (RHS) of Pi respectively. Ki, the intersection of Li and Ri (of P1) is defined as the set of

WME(s) which is required to satisfy Pi and still remains unaltered (or true) after Pi fires. Based on

the above definition of Pi, Li, Ri and I_, two rules (P1 and P2, say) can be input dependent or output-

input dependent:

input dependence: P1 is input dependent on P2 if L1 _ (I-,2 - K2) :_ 0; i.e., P] 's LHS has elements

common with those eliminated from the WM by firing P2.

output-input dependence: P1 output-input dependent on P2 if R1 n (4 - K2) _ 0; i.e., P1 's RHS

has elements common with those eliminated from the WM by firing P2.

23

Having defined these dependency relationships between rules, he was able to select

1. compatible rule subsets that can be fired in parallel (independent of one another) because

they produce the same results when executed in any order (where two rules that are neither input

dependent nor output-input dependent in both directions are said to be compatible.); and

2. communicating rule pairs such that the firing of one may (i) cause the other to fire or (ii)

make the conditions that enable the other to fire no longer true.

These two relationships are characterized by two matdces--P (parallelism matrix) where

0 if rules i and j are compatiblePij = 1 otherwise

and C (communication matrix) where

1 if rule i is input or input - output dependent on rulejcij = 0 otherwise . By inspecting the P matrix,

he was able to reduce the size of the conflict set because firing rules in a compatible subset in any
order produce equivalent results. Based on the C matrix, he proposed a quadratic assignment formu-

lation that, when it is solved, will yield an optimal assignment of rules to processing sites such that

communication across sites is minimized. Unfortunately, the quadratic assignment problem has been

proved to be NP-complete.

5.4 Summary: Mapping Expert Systems to Multiprocessors

In this section, examples of three approaches to the mapping of expert system applications onto

parallel architectures were discussed. These efforts are important in providing a resource manage-

merit system to speed up the execution of an application via parallel processing. The first effort

focused on production systems for the DADO architecture. Five algorithms were discussed, each of

which targeted different characteristics in the production system such as temporal redundancy and

multiple rule firings.

The second effort mapped the RETE network onto multicomputers. Because the RETE network

concentrated on the match phase of a production system cycle, hash tables were utilized to improve

the search bottleneck of two-input nodes. Speedup through this effort is limited to the amount of

time generally consumed by a match phase, approximately 90%. Improvements on the two-input

nodes ranged from 9-fold for general case to 15-fold for special cases and 26-fold for very simple

cases.

The final effort took a different approach. The mapping problem was viewed as a performance

optimization problem which, unfortunately, proves to be NP-complete. Research is still being done

on the mapping problem and attempts like the ones described in this section would help identify

appropriate mappings of specific applications to certain architectures as well as identifying features

and drawbacks of an architecture.

24

6. MEASURING PARALLELISM IN EXPERT SYSTEMS

Parallel implementation of production systems (based on OPS5) have been extensively studied at

Carnegie-Mellon University since the early 1980s under Forgy (1982). Recall that a production sys-

tem operates in three-phased cycles: match-resolve-act. Besides obtaining speedup via parallel

implementations of each phase, further speedup may be obtained by allowing execution between

phases to overlap (i.e., occur simultaneously): e.g., the conflict-resolve phase could begin as soon as

one rule successfully enters the conflict set; the match phase of the next cycle can begin as soon as

an action is carded out. Nevertheless, because of the observation that 90% of processing time is

spent in the match phase, their efforts focused on parallel implementations of the RETE-match

algorithms. Three parallel implementations were proposed (Gupta, 1986):

1. production parallelism--rules fired concurrently;

2. node parallelism---each node of the RETE-NETWORK are allowed to titre concurrently;

3. intranode parallelism--the processing of each token to a two-input node of the RETE-

network are allowed to occur concurrently;

These implementations of decreasing granularities subsume one another and produce increasing

levels of speedup. Further speedups were obtained when changes to working memory are allowed to

occur concurrently. CParaOPS5 (Gupta et al., 1988), a parallel version of OPS5, was written and

executes on an Encore Multimax multiprocessor (a shared-memory architecture). A global hash table

was used to store memory nodes of the RETE-NETWORK for fast lookup. Speedup values of 6.3 to

12.4 has been obtained depending on the application.

6.1 Parallelism in Production Systems and Flat Concurrent Prolog Systems

Perhaps the most detailed measurements on expert systems were carried out by Dr. Anoop Gupta

for his dissertation research (Gupta, 1986) His results were based on six expert systems containing

up to 1100 rules (written in OPS5). Three important observations were made:

1. Very few changes are made to working memory per recognize-act cycle. The number of

RETE network nodes affected by changes to the working memory (and, therefore, the number of

productions requiring significant processing) is also small. For the applications selected only two to

three changes are made to the WM per cycle and less than 30 productions are affected for changes to
the WM.

2. The total number of node activations per change is independent of the number of productions

in the production-system program.

3. Variation in processing requirements for the (few) affected productions is large.

25

Theseobservationswere explained as follows:

1. Firsdy, an expert system contains a large body of knowledge about many different types of

objects and diverse situations. The amount of knowledge (therefore, number of rules) associated with

any specific situation is expected to be small. Secondly, most working-memory elements describe

only a few aspects of a single object or situation; therefore, they could could apply to only a few
rules.

2. There are two probable causes for the small and independent size of the affected rule-sets:

Programmers recursively divide problems into subproblems when writing large programs.

The size of these subproblems is independent of the size of the original probletlv--it is determined by

the complexity that the programmer can deal with at one time.

"A large body of knowledge may be organized hierarchically for easy comprehension and

reasoning." (Gupta, 1986).

3. Rules accounting for different situations, formulated based on different heuristics, obviously

exhibit different levels of complexity and require different amount of processing.

These observations (and explanations) are not only specific to systems written in OPS5--they tran-

scend all expert systems. For example, Leon Alkalaj's measurements on flat concurrentprolog sys-

tems (Mierowsky et al., 1985) reveals that although the number of goals which exist at some point

during execution may exceed several thousand, the average number of goals available for concurrent

processing for most of the time is much smaller (< 12) (Alkalaj, 1989). These observations suggest

major obstacles to obtaining speedup for expert systems from parallel processing.

6.2 Obtaining Speedup via Parallel Processing is Difficult

Observation A (presented in section 6.1) suggests that the inherent parallelism available in expert

systems is small. Observation B further suggests that:

1. smaller production systems do not necessarily run faster than larger ones;

2. allocating one processing element to each RETE node (or production) is not a good idea

because most of them will be idle most of the time; furthermore,

3. there is no reason to expect that larger production systems will exhibit more speedup from

parallelism.

Observation C suggests that scheduling is critical to obtaining whatever (small) speedup is avail-

able in the system. Unfortunately, dividing production systems into partitions which require similar

amount of processing is difficult because good models are not available for estimating the processing

required by productions and it varies over time.

26

Compile-timeanalysisandoptimizationcannotbeperformedeffectivelyonexpert systemappli-
cationsbecauserun-timebehavioris highlydata-dependent.An expertsystemcontainsalargebody
of knowledgecapableof dealingwith differentsituations.Theactualsituationto be tackledis not
knownuntil programexecutiontime.Therefore,programbehavior(suchasfrequencyof procedure
calls,andnumberof storageandcommunicationrequirements)is highly datadependent.Compile-
timeoptimizationtechniquescannotbeapplieddirectly to suchcomputations.Thecomputation must

be partitioned such that many processors can be kept busy for most (if not all) situations the expert

system is likely to face.

Synchronizations take place frequently in search problems. At the heart of many expert system

applications is a heuristic search problem: given an initial state, apply knowledge to prune the search

tree to arrive at the goal state. This two-phase cycle of knowledge application and problem state

modification can be parallelized in many ways---each of which requires frequent synchronization.

Consider the following examples:

The RETE algorithm (OPS5): the conflict-resolution phase must complete before the act phase

can begin. Even though the conflict-resolution phase could begin as soon as each rule successfully

enters the conflict set, the best rule to be applied next cannot be determined until all candidates

(including the slowest ones) have arrived.

The Soar algorithm (Laird, 1986): Computation is divided into an elaboration phase and a deci-

sion phase. Within each phase all productions satisfied may be fired concurrently. However, the

elaboration phase must finish completely before the decision phase may proceed and vice versa.

Because Soar systems usually go through a few loops internally within each phase, the serializing

effect of these two synchronization points is not as bad as that between the conflict-resolution and

act phases in OPS5.

And-parallelism in PROLOG: common terms which occur when two clauses being worked on

simultaneously must share identical bindings. This requires that tasks working concurrently on two

subgoals communicate whenever such bindings are to be changed.

Parallel evaluation of alternatives (i.e., or-parallelism) does not necessarily speed up the time

required to obtain a solution. Consider a search tree of depth d and branching factor b when the

solution lies at one of the leaves of the tree. The best parallel algorithm (with sufficient information

supplied) still requires the same amount of time (d steps) as the best sequential algorithm to locate
the solution.

Finally, it is not clear whether the reasoning process can be naturally decomposed based on spa-

tial (e.g., the solution of differential equations governing heat conduction over a metal plate) or tem-

poral (e.g., real-time image enhancement) considerations in general.

27

7. PARALLEL PROCESSING FOR EXPERT SYSTEMS

Many "building blocks" developed to enable parallel execution of expert systems have been sur-

veyed in sections 3 and 4. Measurement results presented in section 6, however, seem to indicate that

the inherent parallelism available in expert systems is small. Can an expert system be formulated as a

set of as highly parallel computations? Can these "building blocks" be put together effectively to

support parallel computations? We do not have answers to these questions. However, we would like

to draw on some fundamental results concerning speedup and parallel processing in section 7.1 and

put forth some "food for thought" regarding future directions for research in section 7.2.

7.1 Speedup and Parallel Processing

Three principles are discussed in this section:

1. A small section of sequential code in an application can significantly limit its speedup.

2. When partitioning a single application into n tasks, n should be chosen with at least two

things in mind: (1) the amount of intertask synchronization required and (2) the architectural parame-
ters of the hardware.

3. A number of software organization structures have been proposed for multiprocessors.

Speedup could be obtained, however, only certain criteria are met for each proposed organization.

Recall Amdahl's Law which states that the maximum speedup S for a computation obtainable on

a multiprocessor with p processors is governed by

1

S <f+ (1-f)/p

where f is the fraction of the computation that has to be executed sequentially. For example, in order

to obtain a 100-fold speedup with 1,000 processors (no overhead, no communication latencies),

99.1% of the computation must be performed in parallel. In this scenario, each site of this multipro-

cessor spends only I0% of the total time doing useful work. A simple application of this result sug-

gests that parallel RETE-match algorithms can give at most a 10-fold improvement because it speeds

up only the match phase which takes 90% of the execution time.

When partitioning a single application into tasks, the grain size of the tasks should be chosen

such that: (1) there is enough parallelism to exercise the PES of the parallel processor and

(2) communication and process management overhead must not outweigh the speedup obtained from

parallel processing. With production systems, it seems that extremely fine-grained tasks (of the order

of 100 machine instructions) are needed for effective parallel execution (Gupta, 1986). Minimizing

the scheduling overhead for such fine grain tasks is a major obstacle to achieving higher degree of

speedup.

28

A numberof effectivesoftwareorganizationstructureshavebeenproposedfor multiprocessors.
Theseincludesoftware pipelines, systolic algorithms (Kung, 1982; Kung, 1984), divide-and-conquer

(tree-of-processes), and relaxed (Quinn, 1987) or asynchronous processes.

Pipeline structures are routinely employed in the design of factory production lines, photo-

copiers, memory subsystems and CPU's for computers. The speedup obtained from pipeline struc-

tures depends on 1) how many pipelines there are (i.e., the width w of the pipeline); 2) the number

of stages with each pipeline (i.e., the length I of the pipeline); and 3) the (variation of) service times

at each pipeline stage.

Maximum speedup (w*l) is obtained when all pipeline stages require the same service time; and

there is a large number of requests--making the setup and trail-off times negligible.

Certain distributed computations can also be arranged as pipelines. Each stage of the software

pipeline consists of a number of computing processes. Data items are processed incrementally by

passing them from one stage to another. This characteristic, known as temporal decomposability

gives length to the pipeline. The processing at each stage may be carried out concurrently by parti-

tioning the data to be processed into (relatively independent) subsets. This characteristic, known as

spatial decomposability gives width to the pipeline.

Systolic algorithms can be regarded as a special kind of software pipeline because data are also

exchanged regularly and rhythmically between processing nodes. However, there is usually more

than one direction of flow. Maximum efficiency is again obtained when the computations performed

at each processing node takes essentially the same amount of time.

Unlike pipelining where processes are responsible for different stages of a computation, divide-

and-conquer algorithms attack complex problems by (recursively) partitioning a single computation

down into smaller manageable sub-problems. These (relatively independent) sub-problems can be

sent to different processing sites to be processed concurrently. The results obtained are later com-

bined to obtain the complete solution. Partitioning as well as scheduling can be performed either at

compile-time or run-time. With divide-and-conquer, maximum speedup is obtained when the follow-

ing occurs:

1. the setup (task creation) and trail-off(recombination of results) times are small compared to

the computation performed by each task;

2. the number of tasks created is appropriate for the multiprocessor (given its task creation and

management overhead); and

3. tasks are effectively scheduled (mapped) onto the multiprocessor.

An algorithm is said to be relaxed or asynchronous if processes can work with the most recently

available data and, essentially, never have to block and wait for a specific piece of data from another

process.

29

Whetheranexpertsystemcanbespatially or temporally decomposed is application dependent.

Decomposition boundaries can be identified based on a careful analysis of the nature of the input

data set and the reasoning process. Sometimes, these boundaries may not be obvious from first

inspection.

7.2 Conclusions

What is the best strategy for building parallel expert systems? We have several choices.

1. Define a specific class of hardware architecture, then study the mapping of programs to

these architectures (e.g., *Lisp for the Connection Machine, marker passing on NETL and MultiLisp

for the BBN Butterfly)

2. Focus on a specific class of software architecture, construct a multiprocessor that best

matches the program (e.g., DADO for RETE, PIM for concurrent PROLOG)

3. Establish a unified model to construct hardware and software architectures such that subse-

quent mapping between them can be easy and effective (e.g., CParaOPS5 for the Encore Multimax)

We do not yet have an answer to this question. Nevertheless, we would like to offer some

promising research directions.

Requirements for parallel implementation should begin at the top of the software hierarchy and

driven top-down--from problem solving paradigm design to programming language implementation

to operating system to machine architecture. We should decide the macro software organization most

likely to extract parallelism from the expert system application before choosing concurrent objects

vs. parallel lisp, or shared-memory vs. distributed-memory architectures. In many cases, speeding up

the "expert" portion itself may not produce the overall speedup value we require. Bottom-up

approaches produce machines that could exhibit orders of magnitude speedup if suitable applications
can be found.

The most efficient parallel execution model for expert systems may not look or work in any way

like the way they are specified. AI programming paradigms (whether they be knowledge sources

with blackboards, productions on working memory, recursive goal-driven deduction based on

PROLOG clauses or list processing) are designed to enable knowledge to be encoded and processed

in a way similar to that carried out by human beings. Since we cannot, up to this day, fully under-

stand how we represent and solve problems in our heads, these models are shallow and incomplete;

they are applicable within a certain domain and behave intelligently only to a certain extent. They

are not necessarily efficient for execution on a von Neumann computer. However, when we stop ask-

ing how computers can be modified to execute these paradigms directly, efficient execution models

may follow. The RETE algorithm for sequential execution is a very good example for the following

reasons:

1. Knowledge, stated as productions, is actually implemented via a RETE network which does

not even distinguish individual rules;

30

2. Theprocessof reasoning,which involvestheapplicationof productionsto facts,is actually
implementedby thecontinuousflow of bitsandpiecesof facts(calledtokens)throughacomplicated
sieve(calledtheRETEnetwork).

RETEis successfulbecauseredundanciesin knowledgerepresentation(whichenhancetheread-
ability of thecodeandfacilitatesthe incrementalmodificationof theknowledge-base)areeliminated
by intelligentcompilationtechniques.Thesameholdsfor parallelprocessing:insteadof asking
"How canwe buildaparallelprocessorfor expertsystems"or "What is themosteffectiveway to
parallelizesuchandsuchaparadigm?";maybeweshouldask"Among all thecombinationsof paral-
lel hardwareandsoftwarestructuresknownto producehigh speedupvalues,whichof themcanbe
adaptedto processandrepresentknowledge?"

In conclusion,we suggestthatspeedupcannotcomefrom parallelizingoneparticularexistent
paradigmor languageor operatingsystem.We mustdo thefollowing:

1. Understandhowto breakup theproblemwith minimal contentionfor accessingshared
resourcesandreduceddependencies.This couldprobablybedonebyconsidering(macroandmicro)

data dependencies in the expert system when designing its parallel implementation;

2. Re-examine problem solving and representation schemes (such as rules, blackboards, proce-

dures, or logic programming) and be open-minded about efficient parallel execution models that may

not resemble the human problem solving process; and

3. Explore parallelism at the application level; the nature of the application may suggest

whether it can be parallelized temporally or spatially; also consider the portion of the application that

is not knowledge-based (e.g., re-organizing the input/output procedures may save more time than

merely replacing the sequential inference engine with a parallel one).

31

REFERENCES

Alkalaj, Leon: Architectural Support for Concurrent Logic Programming Languages, PhD Thesis,

Computer Science Department, Univ. of Calif., Los Angeles, Calif., Aug. 1989.

Abelson, H.; and Sussman, G.: Structure and Interpretation of Computer Programs, M.I.T. Press,

Cambridge, Mass., 1984.

Bobmw, Daniel G.: Managing Reentrant Structures Using Reference Counts, ACM Transactions on

Programming Languages and Systems, vol. 2, no. 3, July 80, pp. 269-273.

Brown, Harold D.; Schoen, Eric; and Delagi, Bruce A.: An Experiment in Knowledge-based Signal

Understanding Using Parallel Architectures, Knowledge Systems Laboratory, Report Number

KSL 86-69, Computer Science Department, Stanford University, Stanford, Calif., Oct. 1986.

Cannon, Howard I.: Flavors, A Non-Hierarchical Approach to Object-Oriented Programming, 1982.

Conery, John S.; and Kibler, Dennis F.: Parallel Interpretation of Logic Programs, Communications

of the ACM, May 81.

Conery, John S.: The AND/OR Process Model for Parallel Interpretation of Logic Programs,

Dissertation for Ph.D in Information and Computer Science at Univ. of Calif. at Irvine,

University Microfilms International, Ann Arbor, Mich., 1983.

Clocksin, William F.; and Mellish, Christopher S.: Programming in Prolog, Springer-Verlag: Berlin

Heidelberg, 1981.

Dally, William J.: Wire-Efficient VLSI Multiprocessor Communication Networks, in Advanced

Research in VLSI, In Advanced Research in VLSI: Proceedings of the 1987 Stanford

Conference, Stanford, Calif., Paul Losleben, Ed., 1987, pp. 390-415.

DeGroot, Doug: Restricted AND-Parallelism, Proceedings of the International Conference on Fifth

Generation Computer Systems, OHMSHA, Tokyo, 1984, pp. 471--478.

Delagi, Bruce A.; Saraiya, Nakul P.; and Byrd, Gregory T.: LAMINA: CARE Applications

Interface, Knowledge Systems Laboratory, Report Number KSL 86-67, Computer Science

Department, Stanford Univ., Stanford, Calif., Nov. 1987.

Erman, D. L.; Hayes-Roth, F.; Lesser, V. R.; and Reddy, D. Raj: The HEARSAY-II Speech

Understanding System: Integrating Knowledge to Resolve Uncertainty, ACM Computing

Survey, vol. 12, 1980, pp. 213-253.

Fahlman, Scott E.: Design Sketch For a Million-Element NETL Machine, Carnegie-Mellon Univ.,

Department of Computer Science, AAAI-80, Aug. 1980.

32

Fuchi,K. (!COT, Japan);andNivat,M. (INRIA, France): editors, Programming of Future

Generation Computers, in the Proceedings of the First Franco-Japanese Symposium on

Programming of Future Generation Computers, Tokyo, Japan, 6-8, October, 1986, Elsevier

Science Publishers B.V., The Netherlands, 1988.

Forgy, Charles L.: OPS5 User's Manual, Carnegie-Mellon Univ., Pittsburgh, Penn., Report

Number CMU-CS-81-135, July 1981.

Forgy, Charles L.: RETE: A Fast Algorithm for the Many Pattern/Many Object Pattern Match

Problem, Artificial Intelligence, vol. 19, 1982, pp. 17-37.

Giarratano, Joseph C.: CLIPS User's Guide Version 4.3 of CLIPS, Artificial Intelligence Section,

Lyndon B. Johnson Space Center, June 1989.

Gabriel, Richard P.; and McCarthy, John: Queue-Based MultiProcessor Lisp, Conference Record of

the 1984 ACM Symposium on Lisp and Functional Programming, ACM, Austin, Texas, Aug.

1984.

Gottlieb, A.; Grishman, R ; Kruskal, C. P.; McAuliffe, K. P. M.; Rudolph, L.; and Sniv, M.: The

NYU Ultracomputer--Designing a MIMD Shared Memory Parallel Computer, IEEE

Transactions on Computers, C-32, vol. 2, no. 175, Feb. 1983, p. 189.

Goto, Atsuhiro: Research and Development of the Parallel Inference Machine in the Fifth Generation

Computer System Project, Technical Report: TR-473, Institute for New Generation Computer

Technology (ICOT), Minato-Ku, Tokyo, Japan, April 1989.

Goldberg, A.; and Robson, D.: SmallTalk-80: The Language and Its Implementation, Addison-

Wesley, Reading, Mass., 1983.

Gupta, Anoop; Tambe, Milind; Kalp, Dirk; Forgy, Charles; and Newell, Allen: Parallel

Implementation of OPS5 on the Encore Multiprocessor: Results and Analysis, International J.

Parallel Programming, vol. 17, no. 2, Apr. 1988, pp. 95-124.

Gupta, Anoop: Parallelism in Production Systems, Ph.D Thesis, CMU-CS-86-122, Department of

C.S., Carnegie-Mellon Univ., March 1986.

Halstead, Robert H., Jr.: Parallel Symbolic Computer, Computer Magazine, vol. 19, no. 8, Aug.

1986, pp. 35-43.

Halstead, R.; Anderson, T.; Osborne, R.; and Sterling, T.: Concept: Design of a Multiprocessor

Development System, 13th International Symposium on Computer Architecture, Tokyo, June

1986, pp. 40-48.

Hendler, James A.: Integrating Marker-Passing and Problem-Solving: A Spreading Activation

Approach to Improved Choice in Planning, Department of Computer Science, The University

of Maryland, Lawrence Erlbaum Associates, Inc., Hillsdale, NJ, 1988.

33

Hermenegildo,M. V.: An AbstractMachinefor RestrictedAND-ParallelExecutionof Logic
Programs,Univ. of TexasatAustin,Austin,Texas,1985.

Hillis, W. Daniel: The Connection Machine, The MIT Press, Cambridge, Mass., 1985.

Hewitt, Carl; and Lieberman, Henry: Design Issues in Parallel Architectures for Artificial

Intelligence, Mass. Institute of Technology, Cambridge, Mass., Artificial Intelligence

Laboratory, A,I. Memo No. 750, Nov. 83.

Hermenegildo, M.; and Tick, Evan: Memory Performance of AND-Parallel Prolog on Shared-

Memory Architectures, Proceedings of the 1988 International Conference on Parallel

Processing, Aug. 15-19, 1988, Volume II Software, Aug. 1988, pp. 17-21.

Kawanobe, Kazukiyo: Current Status and Future Plans of the Fifth Generation Computer Systems

Project, Proceedings of the International Conference on Fifth Generation Computer Systems,

1984, pp. 3--17.

Kung, H. T.: Why Systolic Architectures? IEEE Computer, January 1982, pp. 37--46.

Kung, S. Y.: On Supercomputing with Systolic/Wavefront Array Processors, Proceedings of the

IEEE, vol. 72, no. 7, July 1984, pp. 867-884.

Laird, John E.. Soar User's Manual, 4th Edition, Xerox PARC, 1986.

McCarthy, John: Recursive Functions of Symbolic Expressions and Their Computation by Machine,

Part I, Communications of the ACM, vol 3, no. 4, 1960, pp. 184-195.

Model, Mitchell L.: Multiprocessing via Intercommunicating Lisp Systems, Physics Department,
Brandeis Univ. Waltham, Mass., 1980.

Moldovan, Dan I.: RUBIC: A Multiprocessor for Rule-Based Systems, IEEE Transactions on

Systems, Man and Cybernetics, vol. 19, no. 4, July/Aug. 1989, pp. 699-706.

Moon, David A.: Garbage Collection in a Large Lisp System, Transactions of the ACM, March

1984, pp. 235-246.

Moto-oka, Tohru; Tanaka, Hidehio; Aida, Hitoshi; and Maruyama, Tsutomu: The Architecture of a

Parallel Inference Engine - PIE -, Proceedings of the International Conference on Fifth

Generation Computer Systems, 1984, pp. 479-488.

Mierowsky, C.; Taylor, S.; Shapiro, E.; Levy, J.; and Safra, S.: The Design and Implementation of

Flat Concurrent Prolog, Weizmann Institute of Science, Rehovot, Israel, Technical

Report CS85-09. July 1985.

34

Nii, H. Penny;Aiello, Nelleke;andRice,James:Frameworksfor ConcurrentProblemSolving:A
Reporton CageandPoligon,KnowledgeSystemsLaboratory,ReportNumberKSL 88-02,
ComputerScienceDepartment,StanfordUniv., Stanford,Calif.,Feb. 1988.

Nii, H. Penny:BlackboardSystems:TheBlackboardModelof ProblemSolvingandtheEvolution
of BlackboardArchitectures,TheAI Magazine,1986,pp.38-53.

Nilsson,Nils J.:Principles of Artificial Intelligence, Springer-Verlag, New York, 1982.

Nakano, Russell; and Minami, Masafumi: Experiments with a Knowledge-Based System on a

Multiprocessor, Knowledge Systems Laboratory, Report Number KSL 87-61, Computer

Science Department, Stanford Univ., Stanford, Calif., Oct. 1987.

Quinn, Michael J.: Designing Efficient Algorithms for Parallel Computers, Univ. of New

Hampshire, McGraw-Hill Book Company, 1987.

Rice, James P.: Problems with Problem-Solving in Parallel: The Poligon System 1.0, Knowledge

Systems Laboratory, Report Number KSL 88-04, Computer Science Department, Stanford

Univ., Stanford, Calif., Jan. 1988.

Schor, Marshall I.; Daly, Timothy P.; Lee, Ho Soo; and Tibbitts, Beth R.: Advances in RETE Pattern

Matching, IBM T.J. Watson Research Center, New York, March 26, 1986.

Seitz, C. L.: The Cosmic Cube, Communications of the ACM, vol. 28, no. 1, Jan. 1985, pp. 22-33.

Using the Sequent Balance 8000, ANL/MCS-TM-66, Mathematics and Computer Science Division,

Argonne National Laboratory, 1986.

Stolfo, Salvatore J.; and Miranker, Daniel P.: DADO: A Parallel Processor for Expert Systems,

IEEE, 1984, pp. 74-82.

Smith, K.: (Ed.). New Computer Breed Uses Transputers for Parallel Processing, Electronics

International, Feb. 24, 1983, pp. 67-68.

Stolfo, Salvatore J.; Miranker, Daniel P.; and Shaw, David Elliot: Architectures and Applications of

DADO: A Large-Scale Parallel Computer for Artificial Intelligence, Columbia University,

New York, Jan. 18, 1983.

Spain, David S.: Application of Artificial Intelligence to Tactical Situation Assessment, Proceedings

of the 16th EASCON 83, Sept. 1983.

Steele, Guy: Common Lisp: The Language, Digital Press, 1984.

Stolfo, Salvatore J.: Five Parallel Algorithms For Production System Execution on the DADO

Machine, Columbia University, Computer Science Department, 1985.

35

Theriault,D.: Issuesin theDesignandImplementationof Act2,M.I.T. Artificial Intelligence
LaboratoryTechnicalReportAI-TR 728,Cambridge,Mass.,June1983.

Tambe, Milind; Acharya, Anurag; and Gupta, Anoop: Implementation of Production Systems on

Message Passing Computers: Techniques, Simulation Results and Analysis, Carnegie-Mellon

Univ., New York, NY, CMU-CS-89-129, April 20, 1989.

Warren, David H.: An Abstract Prolog Instruction Set, Technical Note 309, Artificial Intelligence

Center, SRI International, Oct. 1983.

Wah, Benjamin W.; and Li, Guo-Jie: A Survey on the Design of Multiprocessing Systems for

Artificial Intelligence Applications, IEEE Transactions on System, Man and Cybernetics, 1988.

Wah, Benjamin W.; and Li, Guo-Jie: Design Issues of Multiprocessors for Artificial Intelligence,

Chapter 4 in Scientific Supercomputers and Artificial Intelligence Machines, K. Hwang and

D. DeGroot, eds., McGraw-Hill, 1988, pp. 107-155.

36

 I/ SA Report Documentation PageNa|o_f Aeronauts and

Speoe Adm_i_ mtlon

1. Report No.

NASATM- 103886

2. Government Accession No.

4. Title and Subtitle

Parallel Processing and Expert Systems

7. Author(s)

Sonic Lau and Jerry C. Yan (Sterling Federal Systems Inc.

Palo Alto, CA)

9. Performing Organization Name and Address

Ames Research Center

Moffett Field, CA 94035-1000

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, DC 20546-0001

3. Reciplent's Catalog No.

5. Report Date

May 1991

6. Performing Organization Code

8. Performing Organization Report No.

A-91077

10. Work Unit No.

505-64-54

11. Contract or Grant No.

13 Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

Point of Contact: Sonie Lau, Ames Research Center, MS 244-7, Moffett Field, CA 94035-1000

(415) 604-4944 or FTS 464-4944

16. Abstract

Whether it be monitoring the thermal subsystem of Space Station Freedom, or controlling the

navigation of the autonomous rover on Mars, NASA missions in the 1990s cannot enjoy an increased level

of autonomy without the efficient implementation of expert systems. Merely increasing the computational

speed of uniprocessors may not be able to guarantee that real-time demands are met for larger systems.

Speedup via parallel processing must be pursued alongside the optimization of sequential implementa-

tions. Prototypes of parallel expert systems have been built at universities and industrial laboratories in the

U.S. and Japan. This paper surveys the state-of-the-art research in progress related to parallel execution

of expert systems:The survey discusses multiprocessors for expert systems, parallel languages for

symbolic computations, and mapping expert systems to multiprocessors. Results to date indicate that the

parallelism achieved for these systems is small. The main reasons are (1) the body of knowledge applicable

in any given situation and amount of computation executed by each rule firing are small, (2) dividing the

problem solving process into relatively independent partitions is difficult, and (3) implementation

decisions that enable expert systems to be incrementally refined hamper compile-time optimization. In

order to obtain greater speedups, data parallelism and application parallelism must be exploited.

17. Key Words (Suggested by Author(s))

Parallel processing
Parallel hardware

Parallel software

Expert systems

18. Distribution Statement

Unclassified-Unlimited

Subject Category - 61

Ig. Security Classif. (of this report)

Unclassified
20. Security Classif. (of this page)

Unclassified
21. No. of Pages

39
22, Price

A03

NASA FORM 1626 OCT86

For sale by the National Technical Information Service, Springfield, Virginia 22161

